
Search-Based Mutation Testing for Simulink Models
Yuan Zhan

Department of Computer Science
University of York

York, YO10 5DD, UK
+44-1904-432749

yuan@cs.york.ac.uk

John A. Clark
Department of Computer Science

University of York
York, YO10 5DD, UK

+44-1904-433379

jac@cs.york.ac.uk

ABSTRACT
The efficient and effective generation of test-data from high-level
models is of crucial importance in advanced modern software
engineering. Empirical studies have shown that mutation testing is
highly effective. This paper describes how search-based automatic
test-data generation methods can be used to find mutation
adequate test-sets for Matlab/Simulink models.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging – testing
tools (e.g. data generator, coverage testing).

General Terms
Verification.

Keywords
Matlab/Simulink, mutation testing, test-data generation,
automation, heuristic search, simulated annealing.

1. INTRODUCTION
The modern aim of ‘testing’ is to discover faults at the earliest
possible stage because the cost of fixing an error increases with
the time between its introduction and detection. Thus high-level
models have become the focus of much modern-day verification
effort and research. Matlab/Simulink [27][28][29] is a widely
used notation in the dynamic system development industry that
allows models to be created and exercised. Matlab/Simulink
models can be architectural level designs of software systems. The
simulation facilities allow such models to be executed and
observed. This property of Simulink turns out to be an advantage
for effective dynamic testing. In this work, we focus on
automatically generating mutation adequate test-data for testing
Matlab/Simulink models. Other authors have recognized the
practical significance of such modeling and the need to provide
assurance information automatically, e.g. the worst-case execution
times for such models [21]. Baresel et al. [13] proposed an
innovative way of generating sequences of signals for testing
Simulink models by building the overall signal from a series of
simple signal types such as step, ramp and sine curves etc.. An

input sequence can be made up of a number of sections; each
section is defined by a choice of signal type from the above basic
types, a length and an amplitude. This can significantly reduce the
search space. They also applied this technique successfully to
functional test-data generation – checking speed violation for a
Distronic Cruise Control System.
Most test-data generation work has focused on satisfying
particular structural coverage criteria (refer to [19] for
definition). However, sometimes the execution of the underlying
structure may not discover the error(s) in it. Mutation testing
focuses on measuring the quality of a test-set according to its
ability to detect specific faults. With faults that cannot be detected
by the test-set at hand, we may want to generate targeted test-data
that can discover them. This paper presents a method of
generating such test-data to complement our previous Simulink
structural test-data generation work [17].

2. SEARCH-BASED AUTOMATIC TEST-
DATA GENERATION
Test-data generation can be dynamic or static, depending on
whether the execution of the test object is involved or not. Search-
based test-data generation is a dynamic approach. With the
guidance information obtained from dynamically running or
simulating the underlying test objects, it searches the input
domains of the test objects for targeted test-data. This approach
has been widely applied in structural testing [1][2][3][6][7][8][9]
as well as functional testing [10][11][12] and non-functional
testing (which largely focused on temporal testing) [14][15]. Most
search-based test-data generation research had been carried out at
the code level but Jones et al. [16] have generated test-data from
Z specifications. In [17] we applied our search-based approach to
the generation of test-sets achieving particular structural coverage
measures of Simulink architectural models. In this paper, we
extend our previous work to achieve mutation adequate test-sets.
The search-based test-data generation process is now described.
The satisfaction of a particular test requirement is couched as a
sequence of one or more predicates over the behavior of the
system before, during, or after execution. For example, a specific
path will be taken when the corresponding set of branch
conditions hold true during execution [17]. If X is in the range
0..25, then a constraint error exception may be generated at a
specific assignment statement X=Y×Y, when the healthiness
precondition Y×Y<=25 does not hold before execution of the
statement [11]. A more detailed way of specifying the overflow
might consist of a sequence of predicates defining a path that
reaches the statement (with no exceptions along the way) together
with Y×Y>25 immediately before the statement. Causing a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’05, June 25-29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006…$5.00.

1061

program to break its functional specification can be couched as
satisfying the precondition before execution and not satisfying the
post-condition at the end of execution [10].
We must be able to evaluate how close a program execution
comes to satisfying a predicate at a point. For example, for a
predicate X>=50, a value of 49 for X would be considered
‘closer’ to satisfying the predicate than would a value of 20.
Costs are associated with how far a predicate is from being
satisfied – the closer to satisfaction the smaller the cost. A cost of
zero is assigned when the predicate is satisfied. A typical cost
function scheme is illustrated in Table 1. The value K in the table
refers to a failure constant that is added to further punish test-data
that causes a term to be untrue [2]. All cost function schemes used
are based around similar notions. The table includes recent
enhancements by Bottaci [18].

Table 1. Cost function encoding method.

Search based testing combines the costs of the various relevant
predicates to provide an overall cost for a particular execution.
(We omit details here). The aim is to reduce the overall cost to
zero. The test-data generation problem becomes a cost function
minimization problem; a host of optimization techniques have
been adopted, e.g. simulated annealing [10], genetic algorithms
[6][7][8][9], tabu search [25], and ant colony optimization [26].
Details of heuristic search approaches can be found in [20]. A full

account of test-data generation by heuristic search can be found in
the McMinn’s extensive survey [24].

3. MUTATION TESTING
It is natural to believe that the more errors a test-set can detect, the
better the test-set is. Mutation testing (proposed by DeMillo et al.
[4]) is based on this concept.
Mutation testing works as follows. A large number of simple
faults, such as alterations to operators, constant values or
variables are introduced into the program under test, one at a time.
The resulting programs are called mutants. The goal is to generate
a test-set that can distinguish each mutant from the original
program by comparing the program outputs. If a mutant can be
distinguished from the original program by at least one of the test
cases in the test-set, we say the mutant is killed. Otherwise we say
that the mutant is alive. Consider the statement x:=y+z; two
mutants of this are x:=y−z and x:=y×z. In this instance, if the
input variables are y and z, and the output is variable x, then an
input case (y=0, z=0), for example, cannot kill either of the
mutants as the output x will be the same for all three programs
(one original and two mutants). However, a test input such as
(y=1, z=2) can distinguish both mutants from the original.
Sometimes the mutant cannot be killed due to the semantic
equivalence of the mutant and the original program. (They can
never give different results.) Thus the adequacy of a test-set can
be assessed by the following equation:

EM
DoreAdequacySc
−

=

where D is the number of mutants that has been killed, M is the
total number of mutants, and E is the number of semantically
equivalent mutants [5].
Empirical studies have shown that mutation testing is highly
effective [30][31]. Two major disadvantages of mutation testing
are the huge number of mutants generated, which requires very
significant computation (both for compilation of the mutants and
the execution of test data on them), and the cost of determining
any equivalent mutants, as this is usually done by hand.
In our approach, the way we mutate models – perturbing signals
(as described in the next section) – reduces the number of mutants
generated significantly compared to using the method of
perturbing operations. Our experience also showed that very few
equivalent mutants are generated for each model. Mutants that
cannot be killed by targeted test-data generation must still be
examined manually to determine equivalence.

4. MATLAB/SIMULINK AND MODEL
MUTATION
Simulink 1 is a software package for modelling, simulating, and
analysing system-level designs of dynamic systems. Simulink
models/systems are made up of blocks connected by lines. Each
block implements some function on its inputs and outputs the
results. Outputs of blocks form inputs to other blocks (represented
by lines joining the relevant input/output ports). Models can be
hierarchical. Each block can be a subsystem comprising other

1 Developed by the MathWorks Inc: http://www.mathworks.com.

Predicate Value of Cost Function F

Boolean if TRUE then 0, else K

E1 < E2 if E1 – E2 < 0 then 0, else E1 – E2 + K

E1 ≤ E2 if E1 – E2 ≤ 0 then 0, else E1 – E2 + K

E1 > E2 if E2 – E1 < 0 then 0, else E2 – E1 + K

E1 ≥ E2 if E2 – E1 ≤ 0 then 0, else E2 – E1 + K

E1 = E2
if Abs(E1 – E2) = 0 then 0, else Abs(E1 –

E2) + K

E1 ≠ E2 if Abs(E1 – E2) ≠ 0 then 0, else K

E1 ∨ E2 (E1 unsatisfied,
E2 unsatisfied)

(cost (E1) × cost (E2))/(cost (E1) + cost
(E2))

E1 ∨ E2 (E1 unsatisfied,
E2 satisfied) 0

E1 ∨ E2 (E1 satisfied, E2
unsatisfied) 0

E1 ∨ E2 (E1 satisfied, E2
satisfied) 0

E1 ∧ E2 (E1 unsatisfied,
E2 unsatisfied) cost (E1) + cost (E2)

E1 ∧ E2 (E1 unsatisfied,
E2 satisfied) cost (E1)

E1 ∧ E2 (E1 satisfied, E2
unsatisfied) cost (E2)

E1 ∧ E2 (E1 satisfied, E2
satisfied) 0

1062

blocks and lines. Figure 1 is an illustration of a simple Simulink
model. There are many ways to translate Simulink models into
code. One version of the translation is given in the Appendix
section.
In Simulink, there are certain blocks that form branches. They are:
‘For’, ‘If’, ‘Multiport Switch’, ‘Switch’, ‘SwitchCase’ and
‘While’ block. ‘For’, ‘If’, ‘SwitchCase’ and ‘While’ blocks are
provided by Simulink for the convenience of model construction
from programs. But they are not generally used in constructing
control systems. In particular, they are ruled out in Rolls-Royce
Controls2. The ‘Multiport Switch’ block is a derivative of the
‘Switch’ block. Here we only address problems concerned with
the ‘Switch’ blocks in the current work. There is a control
parameter ‘threshold’ associated with each ‘Switch’ block. If the
signal carried on the second input port of the ‘Switch’ block ‘Vp’
satisfies ‘Vp ≥ threshold’ then input port 1 is selected for output.
Otherwise, input port 3 is selected.

Figure 1 Simulink original model.

In Simulink all blocks execute at each time step. Thus, the
traditional code-level concept of ‘reaching’ a block (i.e. causing it
to execute) does not really occur. However, the computational
outputs of some blocks may be ignored by those blocks for which
they are inputs. In a switch block for example, the non-selected
input is ‘left hanging’. More appropriate structural coverage
criteria can be defined in terms of selection of the inputs to
blocks; a block could be thought of as fully exercised if each of its
inputs is selected during the execution of at least one test,
allowing that input to propagate further [17].
As described in the previous section, mutation testing focuses on
measuring the quality of a test-set according to its ability to detect
specific faults. To test Simulink models, we systematically
introduce faults into the model and see how many of these are
‘discovered’ by the test-set. The more the faults that can be
‘discovered’, the better the test-set.
In our approach, errors are introduced to the system by perturbing
the values of signals carried on wires/lines rather than the
operation performed within blocks. For example, in the system
illustrated in Figure 1, a mutant model can be created by inserting
a mutation block ‘AddMut’ into the wires connecting block ‘Sum’
and block ‘Product1’ in the model, as illustrated in Figure 2. Such

2 This work is sponsored by the Rolls-Royce University

Technology Center.

perturbation can be used to model initialization faults, assignment
faults, condition check faults and even function/subsystem faults.

Figure 2 Simulink mutant model.
We defined three types of mutation operators: Add, Multiply, and
Assign. These represent adding, multiplying, or assigning the
signal carried on the input by/with a certain value. These mutation
operators are built into a Simulink library, each as a subsystem
that can be integrated with other models. A ‘Mask Parameter’3 is
associated with each mutation operator, which defines the ‘certain
value’ as mentioned above. In our system, it is called ‘Mutation
Parameter’. Given the mutation operator, the mutation parameter,
and the fault injection position (which defines a signal connecting
two ports between two blocks, of which, the necessary
information includes Source Block Name, Source Port Number,
Destination Block Name, and Destination Port Number), a mutant
can be automatically generated by our system. By enumerating all
signals within a model and applying appropriate 4 perturbation
methods (a perturbation method is defined by the combination of
a mutation operator and a mutation parameter) to them, faults are
systematically introduced into models under test.

5. SEARCH-BASED MUTATION TESTING
FOR SIMULINK MODELS

5.1 Converting a Mutation Testing Test-Data
Generation Problem into an Optimization
Problem
In mutation testing, we seek test-data that ‘kills’ the generated
mutants (i.e. detects the faults hidden in the mutants). We assume
that a fault can be detected by a test-datum if and only if the test-
datum causes the final output vector of the mutant to be different
from the output vector of the original model. If the system under

3 Simulink allows users to build masked subsystems with one or

more ‘mask parameter(s)’ left open for control by potential
subsystem users.

4 The purpose of perturbing signals is to imitate errors that might
occur within system implementation. Different types of signal
should be perturbed by different means. A Boolean signal only
needs two types of perturbation (assign with ‘1/TRUE’ and
assign with ‘0/FALSE’). However, a real type of signal can be
perturbed with all kinds of combinations of mutation operators
and parameters.

1063

test has more than one output variable/signal, a test-datum that
causes differentiation of any one or more of the output
variables/signals between the two models would be considered
effective. Therefore, the evaluation of how well an underlying
test-datum is satisfying a mutation testing requirement (i.e. fault
detection requirement) should be based on how far the injected
fault propagates within the system under test on any of the
path/paths between the fault’s introduction and the output. Similar
to the way we couched structural test generation as a search
problem [17], we assign a large value to test-data that are poor in
propagating the fault, assign a small value to test-data that are
good in propagating the fault but fail in fully propagating the fault,
and assign zero to test-data that can reveal the fault in the output.

5.2 Cost Function Construction
To detect how far the fault has propagates we need to compare the
runtime states of the original and of the mutant model. So the
dynamic test-data generation process involves the execution of
both of the models. Appropriate probes5 must be inserted into
both models to provide the necessary runtime information.
To meet the goal of having different outputs between the original
model and the faulty model, we need to ensure two things happen:
1. The signal values at/after the point where fault is injected are
different.
2. The difference ripples to the outputs.
The first requirement is normally easily achieved. Usually, unless
the fault we inject is an ineffective fault (e.g. add 0 or multiply by
1), the value of the mutated signal tends to be different from that
of the original one. There are some special occasions where the
two values may be equal. For example, the original signal has a
value of 0 and the mutation is to multiply the value by a certain
value, say 100, or the original signal value is 1 and the mutation is
to assign the value with 1. In these cases, we just need to tune the
input vector to make the signal values at the fault injection point
different from those specific values. Usually the goal can be
achieved just by tuning the inputs randomly. Therefore, our
strategy is to consider it as one approach level. The term of
‘approach level’ has been used in other work [24].
However, it is much more difficult to cause the input to make the
difference at the fault-injection point affect the outputs. To fulfill
this requirement, we need to trace down the structure of the model
and make sure each point on the path from the fault-injection
point through to the output differs between the two models. There
may be a number of paths from the fault-injection point to any of
the output ports of the system. In that case, we require at least one
of them to propagate the difference (show the error). On each
path, every block the signal passes through has the potential to
disguising the fault and therefore it is sensible to break the fault
propagation requirement down into a number of approach levels.
In Simulink, most functional blocks produce different outputs
when the inputs change (e.g., mathematical blocks). Due to the
special function of ‘Switch’ blocks (as introduced in section 4),

5 Probe insertion is the activity of instrumenting a model so as to

reveal certain internal system states during execution. For our
Simulink models, a probe is implemented as an output block
connected to the desired signal.

changes (errors) are often masked by them for certain inputs. In
order to provide more effective guidance to the targeted test-data
search, we want to identify such positions where ‘Switch’ blocks
might disguise the error, detect the information of their branching
status, and apply such information in the test-data evaluation.
For ‘Switch’ blocks, the evaluation of a test-datum for detecting a
particular error can be defined in the following way:
1. If there is a point in the mutant system where the value

carried on the wire may be different from the corresponding
point in the original system, and this point is connected to
only one other block (non-Switch), as shown in Figure 36,
then the cost will be C = CD + COP + CR, where CD is the cost
of causing this point to make a difference between the two
models; COP is the cost of causing the difference to show at
point P (in other words, to show after going through the
operation of block ‘OP’); and CR is the cost of causing the
difference to ripple after the ‘OP’ block.

Figure 3

2. If there is a point in the mutant system where the value

carried on the wire may be different from the corresponding
point in the original system, and this point is connected to
more than one other block, for example, the point is
connected to two other blocks, as shown in Figure 4, then the
cost will be C = CD + (CP1 ∨ CP2)7, where CD is the cost of
causing this point to make a difference between the two
models, CP1 = COP1 + CRP1 and CP2 = COP2 + CRP2. COP1
represents the cost of causing the difference to show at point
P1 (in other words, to show after going through the operation
of block ‘OP1’), and CRP1 represents the cost of causing the
difference to ripple after the ‘OP1’ block. COP2 and CRP2 are
defined likewise.

6 In the figure, the round-cornered rectangle labeled with a ‘Diff’

represents the point in the model where the value carried on the
wire may be different between the two models; the rectangle
labeled with an ‘OP’ represents an operational block; the circle
libeled with a ‘P’ represents the point where a probe is inserted.

7 Here the cost of (CP1 ∨ CP2) will be evaluated as the cost of
either satisfying the predicate formula constructed at P1 or
satisfying the predicate formula constructed at P2. Cost function
evaluation of logical predicates is defined in section 2.

Diff
OP ……

P

1064

Figure 4
3. If there is a point in the mutant system where the value

carried on the wire may be different from the corresponding
point in the original system, and this point is connected to
the first or third in-port of a ‘Switch’ block, as shown in
Figure 5 and Figure 6, then the cost will be C = CD + CP1 +
CR, where CD is the cost of causing this point to make a
difference between the two models, CP1 is the cost of causing
the value at point P1 to satisfy (for the scenario in Figure 5)
or dissatisfy (for the scenario in Figure 6) the first-input
branching requirement8 of the ‘Switch’ block and CR is the
cost of causing the difference to ripple after the ‘Switch’
block.

Figure 5

Figure 6

4. If there is a point in the mutant system where the value

carried on the wire may be different from the corresponding
point in the original system, and this point is connected to
the second in-port of a ‘Switch’ block, as shown in Figure 7,
then the cost will be C = CD + (CP1P2 + CP3) ∨ (C’P1P2 + C’P3)
+ CR, where: CD is the cost of causing values carried at this
point to make a difference between the two models; CP1P2 is

8 First-input branching requirement is the branching requirement

defined for the underlying ‘Switch’ block to pass its first input
through.

the cost of causing the value at point P1 in the mutant model
to be different from the value at point P2 in the original
model; CP3 is the cost of causing the value at P3 to satisfy the
first-input branching requirement of the ‘Switch’ block in the
mutant model but to dissatisfy the first-input branching
requirement in the original model; C’P1P2 is the cost of
causing the value at point P2 in the mutant model to be
different from the value at point P1 in the original model;
C’P3 is the cost of causing the value at P3 to dissatisfy the
first-input branching requirement of the ‘Switch’ block in the
mutant model but to satisfy the first-input branching
requirement in the original model; and CR is the cost of
causing the difference to ripple after the ‘Switch’ block.

Figure 7

With the rules defined above, we will be able to evaluate the cost
of moving from a test-datum to the targeted test-datum by
applying these rules recursively. The starting point should be the
point where a fault is injected and initially that point is the only
‘Diff’ point. Later on, the point where a ‘CR’ is evaluated will be a
new ‘Diff’ point. In the rules above, the basic evaluations are COP,
COP1, COP2, CP1, CP1P2, CP3, C’P1P2, and C’P3. These cost
evaluations are usually interpreted as the cost of fulfilling a
relational predicate or a logical combination of a number of
relational predicates. Detailed cost function evaluation of
relational and logical predicates as illustrated in Table 1 is
adopted.
For example, based on these rules, the cost function of the
problem as illustrated in Figure 1 and Figure 2 can be built as
below:
Probe insertion (Due to the space limit, we cannot provide a
picture. Readers are advised to draw by hand on Figure 2
according to the following instructions to acquire a better
understanding):
P1: between AddMut(out1) and Product1(in1) for the mutant; and
between Sum(out1) and Product1(in1) for the original model.
P2: between Product1(out1) and Switch1(in2) for both models.
P3: between In1(out1) and Switch1(in1) for both models.
P4: between Sum2(out1) and Switch1(in3) for both models.
P5: between Switch2(out1) and Switch4(in2) for both models.
Given the notion that ‘V’ represents value of probe, ‘TH’
represents threshold parameter of a switch block, and ‘Or’ and
‘Mu’ in subscript font represent values obtained from original
model and mutant model respectively, the cost function is
therefore:

C = CP1+ CP2+(CP3P4 + CP2) ∨ (C’P3P4 + C’P2) + CP5

Diff
……

Switch

P1

P3

P2

Diff

OP1 ……

…… OP2

P1

P2

Diff
……

Switch P1

Diff

……

Switch P1

1065

CP1 = cost(VP1Or≠ VP1Mu) …rule1

CP2 = cost(VP2Or≠ VP2Mu) …rule1

CP3P4 = cost(VP3Or≠ VP4Mu) …rule4

CP2 = cost((VP2Or ≥ THSwitch1) ∧ (VP2Mu < THSwitch1)) …rule4

C’P3P4 = cost(VP4Or≠ VP3Mu) …rule4

C’P2 = cost((VP2Or < THSwitch1) ∧ (VP2Mu ≥ THSwitch1)) …rule4

CP5 = cost(VP5Or≥ THSwitch4) …rule3
The above cost function construction ideas are only general
principles. In real applications, the evaluation of COP, COP1 and
COP2 is not that easy. According to the cost function evaluation
method defined in Table 1, the cost of causing E1 ≠ E2 is either a
K or 0. Currently we assign a value of ‘10’ to K. However, such
an evaluation may not represent the hardness of satisfying the
predicate accurately. This problem will be discussed in our future
work. Another problem is that whatever a value of K we decide
on, it does not give much guidance to the search when two
different inputs both get ‘trapped’ by block ‘OP’, or ‘OP1’ or
‘OP2’. To address this problem, we should assess these costs
according to the functionality carried out by the block ‘OP’,
‘OP1’ or ‘OP2’. If this block is a subsystem, then detailed
analysis into the block needs to be carried out in order to give a
meaningful evaluation (the analysis can be performed by
recursively applying the cost evaluation rules given above). For a
basic block9, if this block is a logical block10, to give a good cost
evaluation that can reflect the test-datum quality, we need to
chain-back to obtain the information of what contributes to the
evaluation of the Boolean inputs of the logical block and form the
cost function with that information. Similarly if the basic block is
a relational block, we need to find out its input values and
relational parameter (‘=’, ‘≠’, ‘>’, ‘≥’, ‘<’, or ‘≤’) so as to give
more subtle evaluation. Currently in the prototype testing system
we do not address this kind of situation and we deal with this kind
of block in the same way as dealing with other basic blocks.

5.3 Targeted Test-Data Search
In this work, we have used the well-established technique of
simulated annealing [22] to search for the desired test-data.
Simulated annealing is a global optimization heuristic that is
based on the local descent search strategy. Interested readers are
referred to [23], [22] and [20] for more details about the
annealing algorithm. In our application a move effectively
perturbs the value of one of the inputs in the current test sequence
by a value less than or equal to 1 percent of the range of the input.
We applied a geometric cooling rate of 0.9. The number of
attempted moves at each temperature was 500, with a maximum
of 100 iterations (temperature reductions) and a maximum number
of 30 consecutive unproductive iterations (i.e. with no move being
accepted). These parameters may be thought to be on the ‘small’
side, but the computational expense of simulation requires us to
make pragmatic choices.

9 A basic block is a non-subsystem block.
10 A logical block is a block that carries out logical calculations,

provided by Matlab/Simulink.

6. CASE STUDY
We propose a testing strategy that combines random testing and
targeted heuristic search based testing. This is because random
test-sets are usually a cheap way of achieving a moderate
coverage. For easy problems, it usually consumes less
computation compared to the search-based test-data generation
approach we provide. In our experiments, we start with generating
a moderate amount (say 10,000) of test inputs randomly and run
each of them on both the original model and every mutant model,
check if the mutant can be killed by at least one of the random
test-data. For those mutants that cannot be ‘killed’, we use
heuristic search to target each mutant-killing aim and generate
desired test-data.
Table 2 shows the description of some hard mutant-killing
oriented test-data generation problems (none of the testing aims
involved in these testing problems could be met by the structural
adequate test-sets we generated) and Table 3 shows the
corresponding comparison result of costs (in terms of time and
number of cases tried) in solving them between using simulated
annealing search and random test-data search. In Table 2, each
test-data generation task is specified with the name of the model
under test and the fault description (including mutation operator,
mutation parameter, and fault-injection position, which in turn is
made up of details of source block name, source port number,
destination block name, and destination port number). Model
‘RandMdl’ is the model in Figure 1. ‘Quadratic’ is a model that
has similar size and function as ‘RandMdl’. ‘DetectDuplexFaults’
is a real model from industry. The result in Table 3 is based on the
average of 30 individual runs of the program. All the test
generation tasks demonstrated here are selected because a random
test-set of 10,000 test cases failed in generating satisfactory tests
for these aims.
Here we give an illustration of what the data in the tables
represent. The first row of data means: in the ‘Quadratic’ model,
we inject a fault on the wire connecting block ‘Product2’ port ‘1’
and block ‘Switch2’ port ‘2’. The fault adds ‘1’ to the value
carried on this wire. The simulated annealing search based test-
data generation tool consumed 15,708.4 tries on average (the
result is based on 30 individual runs, and all runs were successful)
to find the desired test-data. The random test-data generation
would have cost more than 85,789.4 tries on average (the result is
also based on 30 individual runs, but only 6 of them produced
successful outcomes) to find the appropriate test-data. The
simulated annealing (SA) runs were allowed up to 100 external
loops and 500 internal loops. The simulated annealing search
usually spends a few thousands tries in searching for a feasible
initial temperature. Therefore, if a SA search fails, the cost of
cases tried would be more than 50,000. On the other hand, the
search time cost of each try is different between SA search and
random search. SA search costs more in the overheads of
computing the moves, evaluating feasibility of test-data, etc. We
allow the random test-data generation up to 100,000 tries of
different test-inputs (so that the time allowance of each search
attempt for the random approach is no less than that is allowed for
the SA search). For some models, each run produced a successful
outcome with this limit. In others, only some of the runs did so.
For failed runs, we prefix the (Search Time) or (Case No Tried)
with a ‘>’ to symbolize the real cost of generating such a test
input should be larger than this figure. The numbers in parenthesis
are the number of successful runs against the number of total runs.

1066

As can be seen, the search-based test-data generation approach
enlarges the fault detection capability of test-sets whilst saving
computation cost in achieving goals compared to random testing.

Table 2 Problem description.

Prob-
lem

Model
Name

Mut
Op

Mut
Para

Src
Block

Src
Port

Dst
Block

Dst
Port

1 Quad-
ratic Add 1 Pro-

duct2 1 Switch2 2

2 Quad-
ratic Add 1 Sum 1 Product 1

3 RandMdl Add 1 Pro-
duct 1 Switch2 2

4 RandMdl Add 1 Pro-
duct1 1 Switch1 2

5 RandMdl Add -1 Pro-
duct2 1 Switch3 2

6 DetectDu-
plexFaults Add -1 DTC6 1 Relation

-al Op 2

Table 3 Test-data search cost comparison.

Problem SA Case No Random
Case No

SA Time
(Seconds)

Random
Time

(Seconds)

1
15,708.4
(30/30)

>85,789.4
(6/30)

324.8
(30/30)

>1,692
(6/30)

2
10,529.8
(30/30)

>88,031.7
(7/30)

335.5
(30/30)

>2,649.8
(7/30)

3
8,008.1
(30/30)

>26,219.5
(28/30)

100.49
(30/30)

>380.33
(28/30)

4
>20,513.9
(21/30)

>76,829.1
(11/30)

>355.3
(21/30)

>1,239.3
(11/30)

5
>22,518.1
(25/30)

>33,805.2
(22/30)

>844.4
(25/30)

>1,195.9
(22/30)

6
760.3
(30/30)

25100
(30/30)

27.5
(30/30)

843.7
(30/30)

7. CONCLUSION AND FUTURE WORK
Evidence has shown structural coverage sufficient tests cannot
guarantee errors will be detected. To address this problem, we
propose an approach to generate mutation adequate test-sets. In
our system, mutants can be generated automatically and
systematically. In order to efficiently generate a sufficient set of
test-data that can kill all the mutants, we use a two-prong
approach. We randomly generate a large set of test-data, detect
their mutant-killing ability, and then minimize the test-set whilst
retaining its overall mutant-killing ability. For mutants that cannot
be killed by the random test-set, we provide an effective means of
automatically generating individual test-data for fulfilling

individual mutant-killing aims. In this way we use targeted test-
data generation to complement random test generation so as to
achieve mutation adequacy.
Testing and analysis at high-level stages has become a crucial part
of effective software development. Here, we have chosen to work
on Matlab/Simulink models. We believe that the conceptual test-
generation framework could extend to other architectural or
modelling notations provided that the notation selected supports
execution or simulation.
The automatic test-data generation method we present is
conceptually extensible. We intend to extend the test-data
generation approach to other types of test-data generation, such as
exception testing, safety assertion testing etc.

8. ACKNOWLEDGMENTS
Our thanks to Rolls-Royce for sponsoring this research.

9. REFERENCES
[1] B. Korel. Automated Software Test Data Generation. IEEE

Transactions on Software Engineering, 16(8): 870-879,
1990.

[2] N. Tracey, J. Clark, K. Mander, and J. McDermid. An
Automated Framework for Structural Test-Data Generation.
Int’l Conf. on Automated Software Engineering, pages 285-
288, 1998.

[3] J. Wegener, K. Buhr, and H. Pohlheim. Automatic Test Data
Generation for Structural Testing of Embedded Software
Systems by Evolutionary Testing. In Proceedings of the
Genetic and Evolutionary Computation Conference
(GECCO 2002), pages 1233-1240.

[4] R. DeMillo, R Lipton, and F. Sayward. Hints on Test Data
Selection: Help for the Practicing Programmer. IEEE
computer, 11: 34-41, 1978.

[5] Jeffrey Voas and Gary McGraw: Software Fault Injection:
Innoculating Programs Against Errors. By John Wiley &
Sons, 1997.

[6] S. Xanthakis, C. Ellis, C. Skourlas, A. Le Gal, S. Katsikas
and K. Karapoulios. Application of Genetic Algorithms to
Software Testing. In Int’l Conf. on Software Engineering
and its Applications, pages 625-636, 1992.

[7] A. Watkins. The Automatic Generation of Test Data Using
Genetic Algorithms. In Proceedings of the Fourth Software
Quality Conference, pages 300-309, 1995.

[8] R. Pargas, M. Harrold, and R. Peck. Test-Data Generation
Using Genetic Algorithms. Software Testing, Verification
and Reliability. 9(4): 263-282, 1999.

[9] B. Jones, H. Sthamer, and D. Eyres. Automatic Structural
Testing Using Genetic Algorithms. Software Engineering
Journal, 11(5): 299-306, 1996.

[10] N. Tracey, J. Clark, and K. Mander. Automated Program
Flaw Finding Using Simulated Annealing. ACM/SIGSOFT
Symposium on Software Testing and Analysis (ISSTA 1998),
pages 73-81. 1998.

[11] N. Tracey, J. Clark, K. Mander, and J. McDermid.
Automated Test Data Generation for Exception Conditions.
Software – Practice and Experience, 30(1): 61-79, 2000.

1067

[12] O. Buehler and J. Wegener. Evolutionary Functional Testing
of an Automated Parking System. In International
Conference on Computer, Communication and Control
Technologies (CCCT’03) and The 9th International
Conference on Information Systems Analysis and Synthesis,
(ISAS’03), Orlando, Florida, USA, 2003.

[13] A. Baresel, H. Pohlheim, and S. Sadeghipour. Structural and
Functional Sequence Test of Dynamic and State-Based
Software with Evolutionary Algorithms. In Proceedings of
the Genetic and Evolutionary Computation Conference
(GECCO 2003), LNCS vol. 2724, pages 2428-2441

[14] J. Wegener, K. Grimm, M. Grochtmann, H. Sthamer and B.
Jones. Systematic Testing of Real-Time Systems.
Proceedings of the 4th European Conference on Software
Testing, Analysis & Review (EuroSTAR '1996), Amsterdam,
Netherlands, December 1996.

[15] P. Puschner and R. Nossal. Testing the Results of Static
Worst-Case Execution-Time Analysis. In Proceedings of the
19th IEEE Real-Time Systems Symposium, pages 134-143,
1998.

[16] B. Jones, H. Sthamer, X. Yang, and D. Eyres. The Automatic
Generation of Software Test Data Sets Using Adaptive
Search Techniques. In Proceedings of the 3rd International
Conference on Software Quality Management, pages 435-
444, 1995.

[17] Y. Zhan, and J. Clark. Search Based Automatic Test-Data
Generation at an Architectural Level. In Proceedings of the
Genetic and Evolutionary Computation Conference
(GECCO 2004), LNCS vol. 3103, pages 1413-1426.

[18] Leonardo Bottaci. Predicate Expression Cost Functions to
Guide Evolutionary Search for Test Data. In Proceedings of
the Genetic and Evolutionary Computation Conference
(GECCO 2003), LNCS vol. 2724, pages 2455-2464.

[19] Hong Zhu, Patrick A. V. Hall and John H. R. May. Software
Unit Test Coverage and Adequacy. ACM Computing
Surveys, Vol. 29(4): 366-427. December 1997.

[20] C. R. Reeves (Ed.). Modern Heuristic Techniques for
Combinatorial Problems. Blackwell Scientific Publications,
Oxford, 1993.

[21] R. Kirner, R. Lang, G. Freiberger and P. Puschner. Fully
Automatic Worst-Case Execution Time Analysis for
Matlab/Simulink Models. 14th Euromicro International
Conference on Real-Time Systems, ECRTS’02, Vienna,
Austria, 2002.

[22] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by
Simulated Annealing. Science, 220(4598): 671-680, May
1983.

[23] N. Metropolis, A. W. Rosenbluth, A. H. Teller, and E. Teller.
Equation of State Calculation by Fast Computing Machine.
Journal of Chem. Phys., 21:1087-1091, 1953.

[24] P. McMinn. Search-based Software Test Data Generation: A
Survey. Software Testing, Verification and Reliability, 14(2),
pages 105-156, June 2004.

[25] Eugenia Díaz, Javier Tuya, Raquel Blanco. Automated
Software Testing Using a Metaheuristic Technique Based on
Tabu Search. In 18th IEEE International Conference on
Automated Software Engineering. Montreal, Canada, Oct.
2003.

[26] P. McMinn and M. Holcombe. The State Problem for
Evolutionary Testing. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO 2003),
LNCS vol. 2724, pages 2488-2500.

[27] The MathWorks. Using Simulink – Model-Based and
System-Based Design. The MathWorks., Inc. 2002.

[28] The MathWorks.
http://www.mathworks.com/products/simulink

[29] Juan Carlos Cockburn. Matlab/Simulink internal resource.
http://www.eng.fsu.edu/~cockburn/matlab/matlab_help.html

[30] A. J. Offutt, J. Pan, K. Tewary, and T. Zhang. An
Experimental Evaluation of Data Flow and Mutation Testing.
In Software – Practice and Experience, 26(2), 165-176,
1996.

[31] P. G. Frankl, S. N. Weiss, and C. Hu. All-Uses vs. Mutation
Testing: An Experimental Comparison of Effectiveness.
Journal of Systems and Software, 38(3), 235-253, 1997.

10. APPENDIX
Pseudo C code equivalence of the system described in Figure 1 is:
double Out1 = calculate(In1:double, In2:
double, In3: double);
tmpSum = In1+In2;
tmpSum1 = In2–In3;
tmpSum2 = In3–In1;
tmpProduct = tmpSum1×tmpSum2;
tmpProduct1 = tmpSum×tmpSum1×tmpSum2;
tmpProduct2 = In3×In3;
if tmpProduct1 >= thresholdSwitch1
 tmpSwitch1 = In1;
else tmpSwitch1 = tmpSum2; end;
if tmpProduct >= thresholdSwitch2
 tmpSwitch2 = tmpSum1;
else tmpSwitch2 = In3; end;
if tmpProduct2 >= thresholdSwitch3
 tmpSwitch3 = tmpProduct2;
else tmpSwitch3 = In3; end;
if tmpSwitch2 >= thresholdSwitch4
 Out1 = tmpSwitch1;
else Out1 = tmpSwitch3; end

1068

