
Search-Based Mutation Testing for Simulink Models 
Yuan Zhan 

Department of Computer Science 
University of York 

York, YO10 5DD, UK 
+44-1904-432749 

yuan@cs.york.ac.uk 

John A. Clark 
Department of Computer Science 

University of York 
York, YO10 5DD, UK 

+44-1904-433379 

jac@cs.york.ac.uk 
 

ABSTRACT 
The efficient and effective generation of test-data from high-level 
models is of crucial importance in advanced modern software 
engineering. Empirical studies have shown that mutation testing is 
highly effective. This paper describes how search-based automatic 
test-data generation methods can be used to find mutation 
adequate test-sets for Matlab/Simulink models.   

Categories and Subject Descriptors 
D.2.5 [Software Engineering]: Testing and Debugging – testing 
tools (e.g. data generator, coverage testing).  

General Terms 
Verification. 

Keywords 
Matlab/Simulink, mutation testing, test-data generation, 
automation, heuristic search, simulated annealing. 

1. INTRODUCTION 
The modern aim of ‘testing’ is to discover faults at the earliest 
possible stage because the cost of fixing an error increases with 
the time between its introduction and detection. Thus high-level 
models have become the focus of much modern-day verification 
effort and research. Matlab/Simulink [27][28][29] is a widely 
used notation in the dynamic system development industry that 
allows models to be created and exercised. Matlab/Simulink 
models can be architectural level designs of software systems. The 
simulation facilities allow such models to be executed and 
observed. This property of Simulink turns out to be an advantage 
for effective dynamic testing. In this work, we focus on 
automatically generating mutation adequate test-data for testing 
Matlab/Simulink models. Other authors have recognized the 
practical significance of such modeling and the need to provide 
assurance information automatically, e.g. the worst-case execution 
times for such models [21]. Baresel et al. [13] proposed an 
innovative way of generating sequences of signals for testing 
Simulink models by building the overall signal from a series of 
simple signal types such as step, ramp and sine curves etc.. An 

input sequence can be made up of a number of sections; each 
section is defined by a choice of signal type from the above basic 
types, a length and an amplitude. This can significantly reduce the 
search space. They also applied this technique successfully to 
functional test-data generation – checking speed violation for a 
Distronic Cruise Control System.   
Most test-data generation work has focused on satisfying 
particular structural coverage criteria (refer to [19] for 
definition). However, sometimes the execution of the underlying 
structure may not discover the error(s) in it. Mutation testing 
focuses on measuring the quality of a test-set according to its 
ability to detect specific faults. With faults that cannot be detected 
by the test-set at hand, we may want to generate targeted test-data 
that can discover them. This paper presents a method of 
generating such test-data to complement our previous Simulink 
structural test-data generation work [17].  

2. SEARCH-BASED AUTOMATIC TEST-
DATA GENERATION  
Test-data generation can be dynamic or static, depending on 
whether the execution of the test object is involved or not. Search-
based test-data generation is a dynamic approach. With the 
guidance information obtained from dynamically running or 
simulating the underlying test objects, it searches the input 
domains of the test objects for targeted test-data. This approach 
has been widely applied in structural testing [1][2][3][6][7][8][9] 
as well as functional testing [10][11][12] and non-functional 
testing (which largely focused on temporal testing) [14][15]. Most 
search-based test-data generation research had been carried out at 
the code level but Jones et al. [16] have generated test-data from 
Z specifications. In [17] we applied our search-based approach to 
the generation of test-sets achieving particular structural coverage 
measures of Simulink architectural models. In this paper, we 
extend our previous work to achieve mutation adequate test-sets. 
The search-based test-data generation process is now described. 
The satisfaction of a particular test requirement is couched as a 
sequence of one or more predicates over the behavior of the 
system before, during, or after execution. For example, a specific 
path will be taken when the corresponding set of branch 
conditions hold true during execution [17]. If X is in the range 
0..25, then a constraint error exception may be generated at a 
specific assignment statement X=Y×Y, when the healthiness 
precondition Y×Y<=25 does not hold before execution of the 
statement [11]. A more detailed way of specifying the overflow 
might consist of a sequence of predicates defining a path that 
reaches the statement (with no exceptions along the way) together 
with Y×Y>25 immediately before the statement. Causing a 
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program to break its functional specification can be couched as 
satisfying the precondition before execution and not satisfying the 
post-condition at the end of execution [10]. 
We must be able to evaluate how close a program execution 
comes to satisfying a predicate at a point.  For example, for a 
predicate X>=50, a value of 49 for X would be considered 
‘closer’ to satisfying the predicate than would a value of 20. 
Costs are associated with how far a predicate is from being 
satisfied – the closer to satisfaction the smaller the cost.  A cost of 
zero is assigned when the predicate is satisfied.  A typical cost 
function scheme is illustrated in Table 1. The value K in the table 
refers to a failure constant that is added to further punish test-data 
that causes a term to be untrue [2]. All cost function schemes used 
are based around similar notions. The table includes recent 
enhancements by Bottaci [18].   

Table 1.  Cost function encoding method. 

 
Search based testing combines the costs of the various relevant 
predicates to provide an overall cost for a particular execution. 
(We omit details here). The aim is to reduce the overall cost to 
zero. The test-data generation problem becomes a cost function 
minimization problem; a host of optimization techniques have 
been adopted, e.g. simulated annealing [10], genetic algorithms 
[6][7][8][9], tabu search [25], and ant colony optimization [26]. 
Details of heuristic search approaches can be found in [20]. A full 

account of test-data generation by heuristic search can be found in 
the McMinn’s extensive survey [24].   

3. MUTATION TESTING 
It is natural to believe that the more errors a test-set can detect, the 
better the test-set is. Mutation testing (proposed by DeMillo et al. 
[4]) is based on this concept. 
Mutation testing works as follows. A large number of simple 
faults, such as alterations to operators, constant values or 
variables are introduced into the program under test, one at a time. 
The resulting programs are called mutants. The goal is to generate 
a test-set that can distinguish each mutant from the original 
program by comparing the program outputs. If a mutant can be 
distinguished from the original program by at least one of the test 
cases in the test-set, we say the mutant is killed. Otherwise we say 
that the mutant is alive. Consider the statement x:=y+z; two 
mutants of this are x:=y−z and x:=y×z. In this instance, if the 
input variables are y and z, and the output is variable x, then an 
input case (y=0, z=0), for example, cannot kill either of the 
mutants as the output x will be the same for all three programs 
(one original and two mutants). However, a test input such as 
(y=1, z=2) can distinguish both mutants from the original. 
Sometimes the mutant cannot be killed due to the semantic 
equivalence of the mutant and the original program. (They can 
never give different results.) Thus the adequacy of a test-set can 
be assessed by the following equation: 

EM
DoreAdequacySc
−

=  

where D is the number of mutants that has been killed, M is the 
total number of mutants, and E is the number of semantically 
equivalent mutants [5]. 
Empirical studies have shown that mutation testing is highly 
effective [30][31]. Two major disadvantages of mutation testing 
are the huge number of mutants generated, which requires very 
significant computation (both for compilation of the mutants and 
the execution of test data on them), and the cost of determining 
any equivalent mutants, as this is usually done by hand.  
In our approach, the way we mutate models – perturbing signals 
(as described in the next section) – reduces the number of mutants 
generated significantly compared to using the method of 
perturbing operations. Our experience also showed that very few 
equivalent mutants are generated for each model. Mutants that 
cannot be killed by targeted test-data generation must still be 
examined manually to determine equivalence. 

4. MATLAB/SIMULINK AND MODEL 
MUTATION 
Simulink 1 is a software package for modelling, simulating, and 
analysing system-level designs of dynamic systems. Simulink 
models/systems are made up of blocks connected by lines. Each 
block implements some function on its inputs and outputs the 
results. Outputs of blocks form inputs to other blocks (represented 
by lines joining the relevant input/output ports). Models can be 
hierarchical. Each block can be a subsystem comprising other 

                                                                 
1 Developed by the MathWorks Inc: http://www.mathworks.com. 

Predicate Value of Cost Function F 

Boolean if TRUE then 0, else K 

E1 < E2 if E1 – E2 < 0 then 0, else  E1 – E2 + K 

E1 ≤ E2 if E1 – E2 ≤ 0 then 0, else  E1 – E2 + K 

E1 > E2 if E2 – E1 < 0 then 0, else  E2 – E1 + K 

E1 ≥ E2 if E2 – E1 ≤ 0 then 0, else  E2 – E1 + K 

E1 = E2 
if Abs(E1 – E2) = 0 then 0, else Abs(E1 – 

E2) + K 

E1  ≠ E2 if Abs(E1 – E2) ≠ 0 then 0, else K 

E1 ∨  E2 (E1 unsatisfied, 
E2 unsatisfied) 

(cost (E1) × cost (E2))/(cost (E1) + cost 
(E2)) 

E1 ∨  E2 (E1 unsatisfied, 
E2 satisfied) 0 

E1 ∨  E2 (E1 satisfied, E2 
unsatisfied) 0 

E1 ∨  E2 (E1 satisfied, E2 
satisfied) 0 

E1 ∧  E2 (E1 unsatisfied, 
E2 unsatisfied) cost (E1) + cost (E2) 

E1 ∧  E2 (E1 unsatisfied, 
E2 satisfied) cost (E1) 

E1 ∧  E2 (E1 satisfied, E2 
unsatisfied) cost (E2) 

E1 ∧  E2 (E1 satisfied, E2 
satisfied) 0 
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blocks and lines. Figure 1 is an illustration of a simple Simulink 
model. There are many ways to translate Simulink models into 
code. One version of the translation is given in the Appendix 
section.   
In Simulink, there are certain blocks that form branches. They are: 
‘For’, ‘If’, ‘Multiport Switch’, ‘Switch’, ‘SwitchCase’ and 
‘While’ block. ‘For’, ‘If’, ‘SwitchCase’ and ‘While’ blocks are 
provided by Simulink for the convenience of model construction 
from programs. But they are not generally used in constructing 
control systems. In particular, they are ruled out in Rolls-Royce 
Controls2. The ‘Multiport Switch’ block is a derivative of the 
‘Switch’ block. Here we only address problems concerned with 
the ‘Switch’ blocks in the current work. There is a control 
parameter ‘threshold’ associated with each ‘Switch’ block. If the 
signal carried on the second input port of the ‘Switch’ block ‘Vp’ 
satisfies ‘Vp ≥ threshold’ then input port 1 is selected for output. 
Otherwise, input port 3 is selected.  

 
Figure 1 Simulink original model. 

In Simulink all blocks execute at each time step. Thus, the 
traditional code-level concept of ‘reaching’ a block (i.e. causing it 
to execute) does not really occur. However, the computational 
outputs of some blocks may be ignored by those blocks for which 
they are inputs. In a switch block for example, the non-selected 
input is ‘left hanging’. More appropriate structural coverage 
criteria can be defined in terms of selection of the inputs to 
blocks; a block could be thought of as fully exercised if each of its 
inputs is selected during the execution of at least one test, 
allowing that input to propagate further [17]. 
As described in the previous section, mutation testing focuses on 
measuring the quality of a test-set according to its ability to detect 
specific faults. To test Simulink models, we systematically 
introduce faults into the model and see how many of these are 
‘discovered’ by the test-set. The more the faults that can be 
‘discovered’, the better the test-set. 
In our approach, errors are introduced to the system by perturbing 
the values of signals carried on wires/lines rather than the 
operation performed within blocks. For example, in the system 
illustrated in Figure 1, a mutant model can be created by inserting 
a mutation block ‘AddMut’ into the wires connecting block ‘Sum’ 
and block ‘Product1’ in the model, as illustrated in Figure 2. Such 

                                                                 
2  This work is sponsored by the Rolls-Royce University 

Technology Center. 

perturbation can be used to model initialization faults, assignment 
faults, condition check faults and even function/subsystem faults. 
 

Figure 2 Simulink mutant model. 
We defined three types of mutation operators: Add, Multiply, and 
Assign. These represent adding, multiplying, or assigning the 
signal carried on the input by/with a certain value. These mutation 
operators are built into a Simulink library, each as a subsystem 
that can be integrated with other models. A ‘Mask Parameter’3 is 
associated with each mutation operator, which defines the ‘certain 
value’ as mentioned above. In our system, it is called ‘Mutation 
Parameter’. Given the mutation operator, the mutation parameter, 
and the fault injection position (which defines a signal connecting 
two ports between two blocks, of which, the necessary 
information includes Source Block Name, Source Port Number, 
Destination Block Name, and Destination Port Number), a mutant 
can be automatically generated by our system. By enumerating all 
signals within a model and applying appropriate 4  perturbation 
methods (a perturbation method is defined by the combination of 
a mutation operator and a mutation parameter) to them, faults are 
systematically introduced into models under test.   

5. SEARCH-BASED MUTATION TESTING 
FOR SIMULINK MODELS  

5.1 Converting a Mutation Testing Test-Data 
Generation Problem into an Optimization 
Problem 
In mutation testing, we seek test-data that ‘kills’ the generated 
mutants (i.e. detects the faults hidden in the mutants). We assume 
that a fault can be detected by a test-datum if and only if the test-
datum causes the final output vector of the mutant to be different 
from the output vector of the original model. If the system under 
                                                                 
3 Simulink allows users to build masked subsystems with one or 

more ‘mask parameter(s)’ left open for control by potential 
subsystem users. 

4 The purpose of perturbing signals is to imitate errors that might 
occur within system implementation. Different types of signal 
should be perturbed by different means. A Boolean signal only 
needs two types of perturbation (assign with ‘1/TRUE’ and 
assign with ‘0/FALSE’). However, a real type of signal can be 
perturbed with all kinds of combinations of mutation operators 
and parameters.  
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test has more than one output variable/signal, a test-datum that 
causes differentiation of any one or more of the output 
variables/signals between the two models would be considered 
effective. Therefore, the evaluation of how well an underlying 
test-datum is satisfying a mutation testing requirement (i.e. fault 
detection requirement) should be based on how far the injected 
fault propagates within the system under test on any of the 
path/paths between the fault’s introduction and the output. Similar 
to the way we couched structural test generation as a search 
problem [17], we assign a large value to test-data that are poor in 
propagating the fault, assign a small value to test-data that are 
good in propagating the fault but fail in fully propagating the fault, 
and assign zero to test-data that can reveal the fault in the output. 

5.2 Cost Function Construction 
To detect how far the fault has propagates we need to compare the 
runtime states of the original and of the mutant model. So the 
dynamic test-data generation process involves the execution of 
both of the models. Appropriate probes5 must be inserted into 
both models to provide the necessary runtime information. 
To meet the goal of having different outputs between the original 
model and the faulty model, we need to ensure two things happen: 
1. The signal values at/after the point where fault is injected are 
different. 
2. The difference ripples to the outputs. 
The first requirement is normally easily achieved. Usually, unless 
the fault we inject is an ineffective fault (e.g. add 0 or multiply by 
1), the value of the mutated signal tends to be different from that 
of the original one. There are some special occasions where the 
two values may be equal. For example, the original signal has a 
value of 0 and the mutation is to multiply the value by a certain 
value, say 100, or the original signal value is 1 and the mutation is 
to assign the value with 1. In these cases, we just need to tune the 
input vector to make the signal values at the fault injection point 
different from those specific values. Usually the goal can be 
achieved just by tuning the inputs randomly. Therefore, our 
strategy is to consider it as one approach level. The term of 
‘approach level’ has been used in other work [24].  
However, it is much more difficult to cause the input to make the 
difference at the fault-injection point affect the outputs. To fulfill 
this requirement, we need to trace down the structure of the model 
and make sure each point on the path from the fault-injection 
point through to the output differs between the two models. There 
may be a number of paths from the fault-injection point to any of 
the output ports of the system. In that case, we require at least one 
of them to propagate the difference (show the error). On each 
path, every block the signal passes through has the potential to 
disguising the fault and therefore it is sensible to break the fault 
propagation requirement down into a number of approach levels.  
In Simulink, most functional blocks produce different outputs 
when the inputs change (e.g., mathematical blocks). Due to the 
special function of ‘Switch’ blocks (as introduced in section 4), 

                                                                 
5 Probe insertion is the activity of instrumenting a model so as to 

reveal certain internal system states during execution. For our 
Simulink models, a probe is implemented as an output block 
connected to the desired signal.  

changes (errors) are often masked by them for certain inputs. In 
order to provide more effective guidance to the targeted test-data 
search, we want to identify such positions where ‘Switch’ blocks 
might disguise the error, detect the information of their branching 
status, and apply such information in the test-data evaluation.  
For ‘Switch’ blocks, the evaluation of a test-datum for detecting a 
particular error can be defined in the following way: 
1. If there is a point in the mutant system where the value 

carried on the wire may be different from the corresponding 
point in the original system, and this point is connected to 
only one other block (non-Switch), as shown in Figure 36, 
then the cost will be C = CD + COP + CR, where CD is the cost 
of causing this point to make a difference between the two 
models; COP is the cost of causing the difference to show at 
point P (in other words, to show after going through the 
operation of block ‘OP’); and CR is the cost of causing the 
difference to ripple after the ‘OP’ block. 

 
 
 
 
 
 
 
 

Figure 3 
 
2. If there is a point in the mutant system where the value 

carried on the wire may be different from the corresponding 
point in the original system, and this point is connected to 
more than one other block, for example, the point is 
connected to two other blocks, as shown in Figure 4, then the 
cost will be C = CD + (CP1 ∨  CP2)7, where CD is the cost of 
causing this point to make a difference between the two 
models, CP1 = COP1 + CRP1 and CP2 = COP2 + CRP2. COP1 
represents the cost of causing the difference to show at point 
P1 (in other words, to show after going through the operation 
of block ‘OP1’), and CRP1 represents the cost of causing the 
difference to ripple after the ‘OP1’ block. COP2 and CRP2 are 
defined likewise.  

 
 
 

                                                                 
6 In the figure, the round-cornered rectangle labeled with a ‘Diff’ 

represents the point in the model where the value carried on the 
wire may be different between the two models; the rectangle 
labeled with an ‘OP’ represents an operational block; the circle 
libeled with a ‘P’ represents the point where a probe is inserted.  

7 Here the cost of (CP1 ∨  CP2) will be evaluated as the cost of 
either satisfying the predicate formula constructed at P1 or 
satisfying the predicate formula constructed at P2. Cost function 
evaluation of logical predicates is defined in section 2.  

Diff  
OP …… 

P 
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Figure 4 
3. If there is a point in the mutant system where the value 

carried on the wire may be different from the corresponding 
point in the original system, and this point is connected to 
the first or third in-port of a ‘Switch’ block, as shown in 
Figure 5 and Figure 6, then the cost will be C = CD + CP1 + 
CR, where CD is the cost of causing this point to make a 
difference between the two models, CP1 is the cost of causing 
the value at point P1 to satisfy (for the scenario in Figure 5) 
or dissatisfy (for the scenario in Figure 6) the first-input 
branching requirement8 of the ‘Switch’ block and CR is the 
cost of causing the difference to ripple after the ‘Switch’ 
block. 

 
 
 
 
 
 
 

Figure 5 
 
 
 
 
 
 
 

Figure 6 
 
4. If there is a point in the mutant system where the value 

carried on the wire may be different from the corresponding 
point in the original system, and this point is connected to 
the second in-port of a ‘Switch’ block, as shown in Figure 7, 
then the cost will be C = CD + (CP1P2 + CP3) ∨  (C’P1P2 + C’P3) 
+ CR, where: CD is the cost of causing values carried at this 
point to make a difference between the two models; CP1P2 is 

                                                                 
8 First-input branching requirement is the branching requirement 

defined for the underlying ‘Switch’ block to pass its first input 
through. 

the cost of causing the value at point P1 in the mutant model 
to be different from the value at point P2 in the original 
model; CP3 is the cost of causing the value at P3 to satisfy the 
first-input branching requirement of the ‘Switch’ block in the 
mutant model but to dissatisfy the first-input branching 
requirement in the original model; C’P1P2 is the cost of 
causing the value at point P2 in the mutant model to be 
different from the value at point P1 in the original model; 
C’P3 is the cost of causing the value at P3 to dissatisfy the 
first-input branching requirement of the ‘Switch’ block in the 
mutant model but to satisfy the first-input branching 
requirement in the original model; and CR is the cost of 
causing the difference to ripple after the ‘Switch’ block. 

 
 
 
 
 
 

 
Figure 7 

 
With the rules defined above, we will be able to evaluate the cost 
of moving from a test-datum to the targeted test-datum by 
applying these rules recursively. The starting point should be the 
point where a fault is injected and initially that point is the only 
‘Diff’ point. Later on, the point where a ‘CR’ is evaluated will be a 
new ‘Diff’ point. In the rules above, the basic evaluations are COP, 
COP1, COP2, CP1, CP1P2, CP3, C’P1P2, and C’P3. These cost 
evaluations are usually interpreted as the cost of fulfilling a 
relational predicate or a logical combination of a number of 
relational predicates. Detailed cost function evaluation of 
relational and logical predicates as illustrated in Table 1 is 
adopted. 
For example, based on these rules, the cost function of the 
problem as illustrated in Figure 1 and Figure 2 can be built as 
below:  
Probe insertion (Due to the space limit, we cannot provide a 
picture. Readers are advised to draw by hand on Figure 2 
according to the following instructions to acquire a better 
understanding): 
P1: between AddMut(out1) and Product1(in1) for the mutant; and 
between Sum(out1) and Product1(in1) for the original model. 
P2: between Product1(out1) and Switch1(in2) for both models. 
P3: between In1(out1) and Switch1(in1) for both models. 
P4: between Sum2(out1) and Switch1(in3) for both models. 
P5: between Switch2(out1) and Switch4(in2) for both models. 
Given the notion that ‘V’ represents value of probe, ‘TH’ 
represents threshold parameter of a switch block, and ‘Or’ and 
‘Mu’ in subscript font represent values obtained from original 
model and mutant model respectively, the cost function is 
therefore: 

C = CP1+ CP2+(CP3P4 + CP2) ∨  (C’P3P4 + C’P2) + CP5 

Diff 
…… 

 
Switch 

P1

P3

P2

Diff 

OP1 …… 

…… OP2 

P1

P2 

Diff 
……  

Switch P1 

Diff 

…… 
 

Switch P1 
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CP1 = cost(VP1Or≠ VP1Mu)                  …rule1 

CP2 = cost(VP2Or≠ VP2Mu)                 …rule1 

CP3P4 = cost(VP3Or≠ VP4Mu)                 …rule4 

CP2 = cost( (VP2Or ≥ THSwitch1) ∧  (VP2Mu < THSwitch1) )        …rule4 

C’P3P4 = cost(VP4Or≠ VP3Mu)                 …rule4 

C’P2 = cost( (VP2Or < THSwitch1) ∧  (VP2Mu ≥ THSwitch1) )       …rule4 

CP5 = cost(VP5Or≥ THSwitch4)                 …rule3 
The above cost function construction ideas are only general 
principles. In real applications, the evaluation of COP, COP1 and 
COP2 is not that easy. According to the cost function evaluation 
method defined in Table 1, the cost of causing E1  ≠ E2 is either a 
K or 0. Currently we assign a value of ‘10’ to K. However, such 
an evaluation may not represent the hardness of satisfying the 
predicate accurately. This problem will be discussed in our future 
work. Another problem is that whatever a value of K we decide 
on, it does not give much guidance to the search when two 
different inputs both get ‘trapped’ by block ‘OP’, or ‘OP1’ or 
‘OP2’. To address this problem, we should assess these costs 
according to the functionality carried out by the block ‘OP’, 
‘OP1’ or ‘OP2’. If this block is a subsystem, then detailed 
analysis into the block needs to be carried out in order to give a 
meaningful evaluation (the analysis can be performed by 
recursively applying the cost evaluation rules given above). For a 
basic block9, if this block is a logical block10, to give a good cost 
evaluation that can reflect the test-datum quality, we need to 
chain-back to obtain the information of what contributes to the 
evaluation of the Boolean inputs of the logical block and form the 
cost function with that information. Similarly if the basic block is 
a relational block, we need to find out its input values and 
relational parameter (‘=’, ‘≠’, ‘>’, ‘≥’, ‘<’, or ‘≤’) so as to give 
more subtle evaluation. Currently in the prototype testing system 
we do not address this kind of situation and we deal with this kind 
of block in the same way as dealing with other basic blocks. 

5.3 Targeted Test-Data Search 
In this work, we have used the well-established technique of 
simulated annealing [22] to search for the desired test-data. 
Simulated annealing is a global optimization heuristic that is 
based on the local descent search strategy. Interested readers are 
referred to [23], [22] and [20] for more details about the 
annealing algorithm. In our application a move effectively 
perturbs the value of one of the inputs in the current test sequence 
by a value less than or equal to 1 percent of the range of the input. 
We applied a geometric cooling rate of 0.9. The number of 
attempted moves at each temperature was 500, with a maximum 
of 100 iterations (temperature reductions) and a maximum number 
of 30 consecutive unproductive iterations (i.e. with no move being 
accepted). These parameters may be thought to be on the ‘small’ 
side, but the computational expense of simulation requires us to 
make pragmatic choices. 

                                                                 
9 A basic block is a non-subsystem block. 
10 A logical block is a block that carries out logical calculations, 

provided by Matlab/Simulink. 

6. CASE STUDY 
We propose a testing strategy that combines random testing and 
targeted heuristic search based testing. This is because random 
test-sets are usually a cheap way of achieving a moderate 
coverage. For easy problems, it usually consumes less 
computation compared to the search-based test-data generation 
approach we provide. In our experiments, we start with generating 
a moderate amount (say 10,000) of test inputs randomly and run 
each of them on both the original model and every mutant model, 
check if the mutant can be killed by at least one of the random 
test-data. For those mutants that cannot be ‘killed’, we use 
heuristic search to target each mutant-killing aim and generate 
desired test-data.  
Table 2 shows the description of some hard mutant-killing 
oriented test-data generation problems (none of the testing aims 
involved in these testing problems could be met by the structural 
adequate test-sets we generated) and Table 3 shows the 
corresponding comparison result of costs (in terms of time and 
number of cases tried) in solving them between using simulated 
annealing search and random test-data search. In Table 2, each 
test-data generation task is specified with the name of the model 
under test and the fault description (including mutation operator, 
mutation parameter, and fault-injection position, which in turn is 
made up of details of source block name, source port number, 
destination block name, and destination port number). Model 
‘RandMdl’ is the model in Figure 1. ‘Quadratic’ is a model that 
has similar size and function as ‘RandMdl’. ‘DetectDuplexFaults’ 
is a real model from industry. The result in Table 3 is based on the 
average of 30 individual runs of the program. All the test 
generation tasks demonstrated here are selected because a random 
test-set of 10,000 test cases failed in generating satisfactory tests 
for these aims.  
Here we give an illustration of what the data in the tables 
represent. The first row of data means: in the ‘Quadratic’ model, 
we inject a fault on the wire connecting block ‘Product2’ port ‘1’ 
and block ‘Switch2’ port ‘2’. The fault adds ‘1’ to the value 
carried on this wire. The simulated annealing search based test-
data generation tool consumed 15,708.4 tries on average (the 
result is based on 30 individual runs, and all runs were successful) 
to find the desired test-data. The random test-data generation 
would have cost more than 85,789.4 tries on average (the result is 
also based on 30 individual runs, but only 6 of them produced 
successful outcomes) to find the appropriate test-data. The 
simulated annealing (SA) runs were allowed up to 100 external 
loops and 500 internal loops. The simulated annealing search 
usually spends a few thousands tries in searching for a feasible 
initial temperature. Therefore, if a SA search fails, the cost of 
cases tried would be more than 50,000. On the other hand, the 
search time cost of each try is different between SA search and 
random search. SA search costs more in the overheads of 
computing the moves, evaluating feasibility of test-data, etc. We 
allow the random test-data generation up to 100,000 tries of 
different test-inputs (so that the time allowance of each search 
attempt for the random approach is no less than that is allowed for 
the SA search). For some models, each run produced a successful 
outcome with this limit. In others, only some of the runs did so. 
For failed runs, we prefix the (Search Time) or (Case No Tried) 
with a ‘>’ to symbolize the real cost of generating such a test 
input should be larger than this figure. The numbers in parenthesis 
are the number of successful runs against the number of total runs. 
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As can be seen, the search-based test-data generation approach 
enlarges the fault detection capability of test-sets whilst saving 
computation cost in achieving goals compared to random testing. 
 

Table 2 Problem description. 

Prob-
lem 

Model 
Name 

Mut 
Op 

Mut 
Para 

Src 
Block 

Src 
Port 

Dst 
Block 

Dst 
Port 

1 Quad-
ratic Add 1 Pro-

duct2 1 Switch2 2 

2 Quad-
ratic Add 1 Sum 1 Product 1 

3 RandMdl Add 1 Pro-
duct 1 Switch2 2 

4 RandMdl Add 1 Pro-
duct1 1 Switch1 2 

5 RandMdl Add -1 Pro-
duct2 1 Switch3 2 

6 DetectDu- 
plexFaults Add -1 DTC6 1 Relation

-al Op 2 

 
Table 3 Test-data search cost comparison. 

Problem SA Case No Random 
Case No 

SA Time 
(Seconds) 

Random 
Time 

(Seconds) 

1 
15,708.4 
(30/30) 

>85,789.4 
(6/30) 

324.8 
(30/30) 

>1,692 
(6/30) 

2 
10,529.8 
(30/30) 

>88,031.7 
(7/30) 

335.5 
(30/30) 

>2,649.8 
(7/30) 

3 
8,008.1 
(30/30) 

>26,219.5 
(28/30) 

100.49 
(30/30) 

>380.33 
(28/30) 

4 
>20,513.9 
(21/30) 

>76,829.1 
(11/30) 

>355.3 
(21/30) 

>1,239.3 
(11/30) 

5 
>22,518.1 
(25/30) 

>33,805.2 
(22/30) 

>844.4 
(25/30) 

>1,195.9 
(22/30) 

6 
760.3 
(30/30) 

25100 
(30/30) 

27.5 
(30/30) 

843.7 
(30/30) 

 

7. CONCLUSION AND FUTURE WORK 
Evidence has shown structural coverage sufficient tests cannot 
guarantee errors will be detected. To address this problem, we 
propose an approach to generate mutation adequate test-sets. In 
our system, mutants can be generated automatically and 
systematically. In order to efficiently generate a sufficient set of 
test-data that can kill all the mutants, we use a two-prong 
approach. We randomly generate a large set of test-data, detect 
their mutant-killing ability, and then minimize the test-set whilst 
retaining its overall mutant-killing ability. For mutants that cannot 
be killed by the random test-set, we provide an effective means of 
automatically generating individual test-data for fulfilling 

individual mutant-killing aims. In this way we use targeted test-
data generation to complement random test generation so as to 
achieve mutation adequacy.  
Testing and analysis at high-level stages has become a crucial part 
of effective software development. Here, we have chosen to work 
on Matlab/Simulink models. We believe that the conceptual test-
generation framework could extend to other architectural or 
modelling notations provided that the notation selected supports 
execution or simulation. 
The automatic test-data generation method we present is 
conceptually extensible. We intend to extend the test-data 
generation approach to other types of test-data generation, such as 
exception testing, safety assertion testing etc. 
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10. APPENDIX 
Pseudo C code equivalence of the system described in Figure 1 is: 
double Out1 = calculate(In1:double, In2: 
double, In3: double); 
tmpSum = In1+In2; 
tmpSum1 = In2–In3; 
tmpSum2 = In3–In1; 
tmpProduct = tmpSum1×tmpSum2; 
tmpProduct1 = tmpSum×tmpSum1×tmpSum2; 
tmpProduct2 = In3×In3; 
if tmpProduct1 >= thresholdSwitch1 
 tmpSwitch1 = In1; 
else tmpSwitch1 = tmpSum2; end; 
if tmpProduct >= thresholdSwitch2 
 tmpSwitch2 = tmpSum1; 
else tmpSwitch2 = In3; end; 
if tmpProduct2 >= thresholdSwitch3 
 tmpSwitch3 = tmpProduct2; 
else tmpSwitch3 = In3; end; 
if tmpSwitch2 >= thresholdSwitch4 
 Out1 = tmpSwitch1; 
else Out1 = tmpSwitch3; end
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